06.Cable Equation and Its Solutions
Cable Equation and Its Solutions
Cable Equation and Its Solutions
Checkout the attachment: 06.1.cable_equation_green_function.pdf
Stationary Equation
The stationary equation is
The form solution using Green’s function method is
So far we have been dealing with math. What is the actual meaning of GF? To dive into this question we need to review the equation for GF, in this case,
In a stimulation-response system, one of the most important properties is the resonance width, or reaction width, which means the deviation required for the amplitude to drop to
Just to build a picture, this length is around\footnote{Since opening of ion channesl can significantly change the transverse conductivity, this estimation can change significantly in different situations.}
Time-dependent Source
To include the time-dependent source we need a two dimensional Dirac delta distribution,
The Green’s function is solved out
Finite Cable
The boundary condition is given by
Non-linear Cable Equation
The current for the ion channels is not simply proportional to the membrane potential which we used for the previous cable equations. Introducing such a time dependent conductivity for the transverse current will significantly increase the complexity of the equations.
Table of Contents
Current Ref:
- snm/06.cable_equation_and_its_solutions.md