Conditional Probability Estimation
An online journal club on the topics Conditional Probability Estimation. Our cover topics on all sorts of probabilistic approach, such as VAE, normalizing, graph neural network, probabilistic time series forecasting.
Introduction: Conditional Probability Estimation
36 Evaluating time series forecasting models
Published:
Tags:
Summary: Our topic for this session is
Cerqueira V, Torgo L, Mozetic I. Evaluating time series forecasting models: An empirical study on performance estimation methods. arXiv [cs.LG]. 2019. Available: http://arxiv.org/abs/1905.11744
Use the following timezone tool or click on the “Add to Calendar” button on the sidebar.
Click here for an interactive widget.
Pages: 60
32 Conformal Time Series Forecasting
Published:
Tags:
References:
- Lim B, Zohren S. Time Series Forecasting With Deep Learning: A Survey. arXiv [stat.ML]. 2020. Available: http://arxiv.org/abs/2004.13408
- Gneiting T, Katzfuss M. Probabilistic Forecasting. Annu Rev Stat Appl. 2014;1: 125–151. doi:10.1146/annurev-statistics-062713-085831
Summary: We start our new journey on time series by sharing and discussing two review papers:
Lim B, Zohren S. Time Series Forecasting With Deep Learning: A Survey. arXiv [stat.ML]. 2020. Available: http://arxiv.org/abs/2004.13408 Gneiting T, Katzfuss M. Probabilistic Forecasting. Annu Rev Stat Appl. 2014;1: 125–151. doi:10.1146/annurev-statistics-062713-085831 (pdf) Use the following timezone tool or click on the “Add to Calendar” button on the sidebar.
Click here for an interactive widget.
Pages: 60
32 Review of Time Series Forecasting
Published:
Tags:
References:
- Lim B, Zohren S. Time Series Forecasting With Deep Learning: A Survey. arXiv [stat.ML]. 2020. Available: http://arxiv.org/abs/2004.13408
- Gneiting T, Katzfuss M. Probabilistic Forecasting. Annu Rev Stat Appl. 2014;1: 125–151. doi:10.1146/annurev-statistics-062713-085831
Summary: Lim B, Zohren S. Time Series Forecasting With Deep Learning: A Survey. arXiv [stat.ML]. 2020. Available: http://arxiv.org/abs/2004.13408
Use the following timezone tool or click on the “Add to Calendar” button on the sidebar.
Click here for an interactive widget.
Pages: 60
32 Counterfactual Explanation in Multivariate Time Series
Published:
Tags:
Summary: Ates E, Aksar B, Leung VJ, Coskun AK. Counterfactual Explanations for Machine Learning on Multivariate Time Series Data. arXiv [cs.LG]. 2020. Available: http://arxiv.org/abs/2008.10781
Use the following timezone tool or click on the “Add to Calendar” button on the sidebar.
Click here for an interactive widget.
Pages: 60
32 Causal Inference
Published:
Tags:
Summary: Alexa will lead a discussion on causal inference.
Use the following timezone tool or click on the “Add to Calendar” button on the sidebar.
Click here for an interactive widget.
Pages: 60
31 Uncertainty in Deep Learning
Published:
Tags:
Summary: Topic: uncertainty in deep learning
References:
Gawlikowski, J. et al. A Survey of Uncertainty in Deep Neural Networks. Arxiv (2021). Jospin, L. V., Buntine, W., Boussaid, F., Laga, H. & Bennamoun, M. Hands-on Bayesian Neural Networks – a Tutorial for Deep Learning Users. Arxiv (2020). Gal, Yarin. “Uncertainty in deep learning.” (2016): 3. Use the following timezone tool or click on the “Add to Calendar” button on the sidebar.
Pages: 60
30 Hamilton WL. Graph Representation Learning. Chapter 8 (2)
Published:
Tags:
Summary: Traditional GraphGeneration Approaches
Pages: 60
29 Hamilton WL. Graph Representation Learning. Chapter 8
Published:
Tags:
Summary: Traditional GraphGeneration Approaches
Pages: 60
28 Multivariate Time-series Forecasting Using GNN
Published:
Tags:
Summary: Multivariate Time-series Forecasting
Pages: 60
27 Graph Convolutional Matrix Completion
Published:
Tags:
References:
- van den Berg R, Kipf TN, Welling M. Graph Convolutional Matrix Completion. arXiv [stat.ML]. 2017. Available: http://arxiv.org/abs/1706.02263
- Contributors to Wikimedia projects. Matrix completion. In: Wikipedia [Internet]. 9 Nov 2021 [cited 12 Dec 2021]. Available: https://en.wikipedia.org/wiki/Matrix_completion
Summary: Graph Convolutional Matrix Completion
Pages: 60
26 Graph Neural Networks: Theoretical Motivations (Part 2)
Published:
Tags:
Summary: Theoretical motivations of GNN
Pages: 60
25 Graph Neural Networks: Theoretical Motivations
Published:
Tags:
Summary: Theoretical motivations of GNN
Pages: 60