Conditional Probability Estimation
An online journal club on the topics Conditional Probability Estimation. Our cover topics on all sorts of probabilistic approach, such as VAE, normalizing, graph neural network, probabilistic time series forecasting.
Introduction: Conditional Probability Estimation
48 End of 2022 Fireside Chat
Published:
Tags:
Summary: Fireside chat:
data statistics machine learning engineering Use the following timezone tool or click on the “Add to Calendar” button on the sidebar.
Click here for an interactive widget.
Pages: 60
47 Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting
Published:
Tags:
Summary: Topic:
Rasul K, Seward C, Schuster I, Vollgraf R. Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting. arXiv [cs.LG]. 2021. Available: http://arxiv.org/abs/2101.12072
Use the following timezone tool or click on the “Add to Calendar” button on the sidebar.
Click here for an interactive widget.
Pages: 60
46 Diffusion Models: A Comprehensive Survey of Methods and Applications
Published:
Tags:
Summary: Topic:
Yang L, Zhang Z, Song Y, Hong S, Xu R, Zhao Y, et al. Diffusion Models: A Comprehensive Survey of Methods and Applications. arXiv [cs.LG]. 2022. Available: http://arxiv.org/abs/2209.00796
Use the following timezone tool or click on the “Add to Calendar” button on the sidebar.
Click here for an interactive widget.
Pages: 60
45 Probabilistic Forecasting: A Level-Set Approach
Published:
Tags:
Summary: Topic:
Hasson H, Wang Y, Januschowski T, Gasthaus J. Probabilistic forecasting: A level-set approach. [cited 25 Jan 2022]. Available: https://assets.amazon.science/a7/2b/29e00a5e429b8f2e708091ecb53e/probabilistic-forecasting-a-level-set-approach.pdf
Code: https://github.com/awslabs/gluonts/blob/fcc50e8be222bcf3b3da47ed1ed50b467e03f7e8/src/gluonts/ext/rotbaum/_model.py
Use the following timezone tool or click on the “Add to Calendar” button on the sidebar.
Click here for an interactive widget.
Pages: 60
44 Forecasting with Trees
Published:
Tags:
Summary: Topic: Forecasting with Trees
References:
https://www.sciencedirect.com/science/article/pii/S0169207021001679 Use the following timezone tool or click on the “Add to Calendar” button on the sidebar.
Click here for an interactive widget.
Pages: 60
43 Gradient Boosted Decision Trees (II)
Published:
Tags:
Summary: Topic: XGBoost, LightGBM and Trees (II)
References:
https://lightgbm.readthedocs.io/en/v3.3.2/ https://papers.nips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html Use the following timezone tool or click on the “Add to Calendar” button on the sidebar.
Click here for an interactive widget.
Pages: 60
42 Gradient Boosted Decision Trees (I)
Published:
Tags:
Summary: Topic: XGBoost, LightGBM and Trees (I)
References: https://xgboost.readthedocs.io/en/stable/tutorials/model.html
Use the following timezone tool or click on the “Add to Calendar” button on the sidebar.
Click here for an interactive widget.
Pages: 60
41 Neural ODE
Published:
Tags:
Summary: Topic:
Chen RTQ, Rubanova Y, Bettencourt J, Duvenaud D. Neural Ordinary Differential Equations. arXiv [cs.LG]. 2018. Available: http://arxiv.org/abs/1806.07366
Use the following timezone tool or click on the “Add to Calendar” button on the sidebar.
Click here for an interactive widget.
Pages: 60
40 M Competition
Published:
Tags:
Summary: We will discuss the M competition.
@小紫花:
M5: 2020 年的一个比赛,预测沃尔玛在米国 3 个州、 10 个店、3000 多个产品的销售,要求预测 28 天。两个比赛:预测一个中值,或者预测一个分布(9 个数)。今年有 M6 官网,指引 PDF https://mofc.unic.ac.cy/m5-competition/ 中值 https://www.kaggle.com/competitions/m5-forecasting-accuracy/ 分布 https://www.kaggle.com/competitions/m5-forecasting-uncertainty 比赛背景、组织、运营总结 https://www.sciencedirect.com/science/article/pii/S0169207021001187 中值预测总结 https://www.sciencedirect.com/science/article/pii/S0169207021001874 分布预测总结(我比较感兴趣) https://www.sciencedirect.com/science/article/pii/S0169207021001722 一篇评论文章 https://www.sciencedirect.com/science/article/abs/pii/S016920702100128X 对讨论的回复 https://www.sciencedirect.com/science/article/abs/pii/S0169207022000644
Use the following timezone tool or click on the “Add to Calendar” button on the sidebar.
Click here for an interactive widget.
Pages: 60
39 Data Augmentation for Time Series
Published:
Tags:
Summary: Wen Q, Sun L, Yang F, Song X, Gao J, Wang X, et al. Time Series Data Augmentation for Deep Learning: A Survey. arXiv [cs.LG]. 2020. Available: http://arxiv.org/abs/2002.12478
Use the following timezone tool or click on the “Add to Calendar” button on the sidebar.
Click here for an interactive widget.
Pages: 60
38 Temporal Fusion Transformer
Published:
Tags:
Summary: Lim B, Arik SO, Loeff N, Pfister T. Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting. In: arXiv.org [Internet]. 19 Dec 2019 [cited 9 Jul 2022]. Available: https://arxiv.org/abs/1912.09363
Use the following timezone tool or click on the “Add to Calendar” button on the sidebar.
Click here for an interactive widget.
Pages: 60
37 DeepAR
Published:
Tags:
Summary: Topic: DeepAR.
Use the following timezone tool or click on the “Add to Calendar” button on the sidebar.
Click here for an interactive widget.
Pages: 60